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In this paper, nonsmooth fold bifurcations associated with the onset of low-relative-

velocity (near-grazing) impacts in an oscillatory mechanical system are proposed as a

potential operating principle for high-speed limit switches. Specifically, analytical,

numerical, and experimental methods are employed to investigate the near-grazing

transient behavior in a representative system. It is shown that the rate of growth of

successive impact velocities increases beyond all bounds as the threshold parameter

value is approached. A limit switch based on the proposed nonsmooth fold scenario

would thus be expected to outperform one that relies on a smooth bifurcation, such as

the cyclic-fold bifurcation, in terms of switching speed and sensitivity.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Limit switches constitute a class of input–output devices that change operating state in reaction to the crossing of a
threshold value of their input [1]. They can be used as indicators, control devices, or more commonly both. Resettable limit
switches often include hysteresis to prevent hunting near the threshold. Their use enables the safe, reliable operation of
many everyday household items, such as coffee makers, electric circuit breakers, and water heaters. As indicators, limit
switches provide a logic high when a set level of a quantity has been reached. These are used to monitor critical values of
temperature, voltage, pressure, etc. in both consumer and industrial settings [2–5]. As control devices, limit switches
provide the simplest form of feedback: discrete on/off states in response to input. The switch might be permanent, such as
when a fuse burns out, or capable of being reset, such as with a circuit breaker.

Of particular interest in the present context are limit switches whose function relies on a snap-like action [6,7]. Within a
dynamical-systems context, the internal state of the switch transitions abruptly between two dissimilar steady-state
behaviors as a result of a small change in the value of a system parameter. Specifically, as the parameter exceeds the critical
value, there is an associated loss of stability or disappearance of the original steady-state behavior. This leaves the limit
switch no choice but to evolve to a different steady-state attractor. Examples of such bifurcations, such as saddle-node and
subcritical pitchfork bifurcations of equilibria, are exploited in existing limit-switch devices. In these cases, parameter
hysteresis typically results from the persistence of the target steady-state behavior even as the system parameter is
reduced past the original threshold value. The speed of the transients following the bifurcation and the nature of the input
dynamics determine the switch’s reaction to excursions past the threshold. As an example, a slow-blow fuse is designed to
pass overload currents for a short amount of time to allow for start-up transients in electrical machinery. A lag in switching
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speed is thus critical to the slow-blow fuse’s successful operation. In contrast, in the case of protection for a circuit board
containing delicate components, a similar lag in switching speed would be disastrous.

Generalizations to periodic steady-state attractors of the snap-like action due to saddle-node bifurcations of equilibria
have been proposed recently for limit-switch design using nonlinear circuitry as well as parametrically excited
microelectromechanical devices [8–16]. The corresponding cyclic-fold bifurcation is characterized by the mutual
annihilation of a stable and unstable periodic trajectory beyond the threshold value. Using center-manifold theory and
the theory of normal forms, the local dynamics in the vicinity of a cyclic-fold bifurcation may be described by the discrete
map

xnþ1 ¼ xn þ mþ x2
n , (1)

where m denotes the deviation of the system parameter from the threshold value and xn and xnþ1 parametrize the
deviation from the periodic trajectory at m ¼ 0 upon successive intersections of a state-space trajectory with a suitably
defined Poincaré surface [17]. Here, xnþ1 ¼ xn ¼ x� for some m corresponds to a periodic response of the continuous state of
the device. In particular, it follows that there exist two such periodic responses with x� � 0 for mt0, one when m ¼ 0, and
none for m\0. Specifically, for 0om; jx0j51 deviations away from the original periodic trajectory grow linearly with n, for
sufficiently small n.

The purpose of this paper is to investigate the nonsmooth fold associated with a grazing bifurcation in a vibro-impacting
mechanical system for use in limit-switch design [18,19]. As demonstrated below, this alternative compares favorably with
the cyclic-fold bifurcation in terms of the growth rate of deviations away from the original periodic trajectory, indicating
the potential to ensure a quicker switch response. Here, at the critical threshold value, there exists a periodic oscillation of
an internal element of the device that achieves zero-relative-velocity (grazing) contact with a rigid obstacle at some phase
of the oscillation. Computable conditions distinguish between the case in which a steady-state attractor persists in the
neighborhood of the grazing periodic oscillation for nearby parameter values and the case of interest here, in which
the disappearance of a local attractor results in a rapid transition to a distinctly different steady-state behavior. Indeed, as
shown using the theory of discontinuity mappings [20,21] and rederived here in terms of successive values of the relative
velocity at impact, the growth rate of deviations away from the grazing oscillation increases beyond all bounds as the
threshold parameter value is approached.

The paper is organized as follows. Section 2 describes an experimental setup used to explore the near-grazing dynamics
and, specifically, the growth of relative velocity at successive impacts. An approximate map describing the relationship
between successive values of the relative impact velocity is rigorously derived and validated against numerical simulations
in Section 3. Section 4 reports on collected experimental data and compares the observed behavior to the theoretical
predictions. Finally, the paper concludes with a discussion summarizing key findings and implications for further work.
2. Phenomenology

2.1. Experimental apparatus

An experimental impacting mechanical system, shown schematically in Fig. 1, was chosen to investigate the transient
dynamics following the onset of low-velocity impacts (cf. Refs. [22–27]). The system consists of a spherical steel ball
attached to the end of a cantilevered beam. The ball and beam assembly is in turn clamped to a support and oriented as
shown in Fig. 1 with the ball resting in front of the head of a Brüel and Kjær Type 4809 electromagnetic shaker. When the
shaker is excited (a signal generator and a Brüel and Kjær Type 2706 power amplifier were used), the head moves relative
to the body, which is stationary relative to the support. With sufficient excitation amplitude, the head of the shaker will
impact the ball resulting in the behavior of interest.

A Polytec PDV100 laser vibrometer was used to gather velocity data. The laser was mounted on a tripod and aimed
axially with the motion of the ball. The laser beam was passed through small holes in the support so as to reflect off the
objects of interest on the other side (the head and ball), as shown in Fig. 1. Signal generation, data acquisition, and signal
processing were performed using a Spectral Dynamics SigLab Model 20–42 Dynamic Signal Analyzer and SigLab software
(running in Matlab). For further discussion regarding the experimental apparatus, see Ref. [28].
2.2. Experimental procedure and data processing

To investigate the transient behavior experimentally, a sinusoidal signal was generated using the Virtual Function
Generator (VFG) supplied with SigLab. The output from the VFG was routed into an amplifier, then from the amplifier to the
inputs of the shaker, again shown schematically in Fig. 1. The shaker was started from rest and the gain of the amplifier
increased manually until the amplitude of the shaker oscillations brought the head of the shaker close to the ball.

To get as close as possible to grazing contact, the input signal was then incremented quasi-statically using the digital
controls within SigLab until impacting behavior was observed. The amplitude of the increments was the minimal amount
possible within SigLab, corresponding to approximately 0.26% of the full-scale input. Subsequent to the onset of impacts,
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Fig. 2. Characteristic time evolutions for the ball velocity subsequent to the onset of impacts: (a) numerical simulation and (b) experiment.
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Fig. 1. Schematic of the experimental apparatus used for investigating near-grazing transient dynamics. The system consists of a spherical steel ball (1)

attached to the end of a cantilevered beam (2), clamped to a base (3) through a rigid support (4), and oriented such that the ball rests in front of the head

of an electromagnetic shaker (5).
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data were sampled at 12:8 kHz for approximately 30 cycles of the excitation. A characteristic time evolution is shown in
Fig. 2(b) and demonstrates the anticipated dramatic growth of the ball velocity over time.

2.3. Mathematical model

Consider, for simplicity, a lumped parameter model of the experimental apparatus in which the ball and beam assembly
is represented by a massive particle constrained to straight-line motion and affected by a linear restoring force and
damping. Specifically, let q be the displacement of the particle away from its equilibrium position and suppose that
�bþ a sinot, where a; b;o40, represents the displacement of the shaker head relative to the particle’s equilibrium
position.

Let

x ¼ ðq _q y ¼ ot mod 2pÞT (2)

denote the state of the corresponding hybrid dynamical system with continuous dynamics governed by the smooth vector
field

fðxÞ ¼ ð _q � 2zon _q�o2
nq oÞT (3)
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as long as

himpactðxÞ ¼
def

qþ b� a sin yX0, (4)

and discrete jumps given by

xCgðxÞ ¼ ðq � e _qþ ð1þ eÞao cos y yÞT (5)

triggered by transversal crossings of the zero-level surface of himpact. Here, z is the damping factor, on is the natural
frequency of the system, and e represents a coefficient of restitution. In particular,

hturningðxÞ ¼
def qxhimpactðxÞ � fðxÞ ¼ _q� ao cos y (6)

denotes the rate of change of himpact along trajectories of the smooth vector field, i.e., the relative velocity between the
particle and shaker. From the expression for g it follows that

hturningðgðxÞÞ ¼ �ehturningðxÞ (7)

and thus that trajectories that reach himpact ¼ 0 at incoming points with hturningo0 are connected to trajectories based at
outgoing points on himpact ¼ 0 with hturning40.

2.4. Numerical simulations

A free vibration test of the ball and beam assembly was completed to characterize the damping factor z and natural
frequency on. The ball was given an initial displacement and released from rest. The transient dynamics of the system were
then captured as the system settled to equilibrium. From experimental data averaged over 10 runs and using the method of
logarithmic decrement, z was estimated at 0:0881 and on was estimated at 25:2 rad=s.

As the collected data were limited to the absolute velocity of the ball, it was necessary to rely on indirect methods for
determining a suitable numerical estimate of the coefficient of restitution e. Specifically, e was estimated at 0:55 so as to
result in close agreement between the resultant simulated velocity data (shown in Fig. 2(a)) and the experimental data
(shown in Fig. 2(b)).

3. Theoretical analysis

3.1. Near-grazing dynamics

As long as apb,

xðtÞ ¼ ð0 0 ot mod 2pÞT (8)

describes a smooth periodic trajectory of the hybrid dynamical system. In particular, for a ¼ a� ¼
def

b a simple tangential
(grazing) contact occurs between this trajectory and himpact ¼ 0 at

x� ¼ 0 0
p
2

� �T
. (9)

Here, hturningðx
�Þ ¼ 0. Of interest in the subsequent analysis is the dynamics of nearby initial conditions for a � a�.

Specifically, let a� a� ¼ �da and consider the initial condition

x0 ¼ x� þ � da d _q
dhturning � d_q

bo

 !T

þ Oð�2Þ (10)

such that himpactðx0Þ ¼ Oð�2Þ and hturningðx0Þ ¼ �dhturning þOð�2Þ, where dhturningo0 (cf. Fig. 3). It follows that

x1 ¼ gðx0Þ ¼ x� þ � da d _q� ð1þ eÞdhturning

dhturning � d _q
bo

 !T

þOð�2Þ (11)

such that himpactðx1Þ ¼ Oð�2Þ and hturningðx1Þ ¼ ��edhturning þ Oð�2Þ.
In the case that zo1, the smooth flow corresponding to the vector field f is given by

/ðt; ~xÞ ¼

e�tzon

O
ð ~qO cosOt þ ð _~qþ ~qzonÞ sinOtÞ

e�tzon

O
ð _~qO cosOt �onð

_~qzþ ~qonÞ sinOtÞ

~yþot

0
BBBBB@

1
CCCCCA, (12)
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Fig. 3. Schematic illustrating the sequence of points introduced in the derivation of Eq. (24) and the growth in order in � of the value of hturning at

successive impacts.
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where O ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
. In particular, with

t1 ¼
def 1

bo2
d_q� dhturning �

e�2npzon=o

O

ðd _q� ð1þ eÞdhturningÞO cos 2npO
o

�onðondaþ d_qz� ð1þ eÞzdhturningÞ sin 2npO
o

0
@

1
A

0
@

1
A (13)

for some positive integer n, it follows that

hturning /
2np
o
þ �t1 þ Oð�2Þ;x1

� �� �
¼ Oð�2Þ (14)

and

himpact /
2np
o
þ �t1 þ Oð�2Þ;x1

� �� �
¼ dhimpact�þ Oð�2Þ, (15)

where

dhimpact ¼ �daþ
e�2npzon=o

O
Oda cos 2npO

o þ ðonzdaþ d _q� ð1þ eÞdhturningÞ sin 2npO
o

� �
. (16)

Let n be the smallest integer1 such that dhimpact is negative and set

x2 ¼ /
2np
o þ �t1 þ O �2

� �
;x1

� �
. (17)

It follows that a transversal crossing of himpact must have occurred prior to the trajectory reaching x2. In particular, with

t2 ¼
def
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2dhimpact

bo2

s
(18)

it follows that

himpactð/ð
ffiffiffi
�
p

t2 þ Oð�Þ;x2ÞÞ ¼ Oð�2Þ (19)

and

hturningð/ð
ffiffiffi
�
p

t2 þ Oð�Þ;x2ÞÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2bo2dhimpact

q ffiffiffi
�
p
þ Oð�Þ, (20)
1 Such an integer is guaranteed to exist in the underdamped case zo1.
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whereas

_f2ð
ffiffiffi
�
p

t2 þ Oð�Þ;x2Þ ¼ Oð�Þ (21)

corresponding to the value of absolute velocity, _q, at this location (see Fig. 3).
The above analysis demonstrates that for sufficient small �, repeated iterations of the three steps described above yield a

value of hturning that eventually deviates from 0 by Oð
ffiffiffi
�
p
Þ while d _q remains Oð�Þ. It follows that da and d_q terms in the

expression for dhimpact may eventually be ignored yielding

dhimpact ¼ �ð1þ eÞdhturning
e�2npzon=o

O
sin

2npO
o (22)

and the map

dhturning C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bo2ð1þ eÞdhturning

e�2npzon=o

O
sin

2npO
o

s
(23)

from one impact to the next, where n is the smallest integer that guarantees that the argument of the radical is positive.
From Eq. (5), it follows that the jump D _q in absolute velocity due to impacts is proportional with coefficient �ð1þ eÞ to

the relative velocity dhturning at impact, thus yielding the map

D _qC cðe;o;b;on; zÞ
ffiffiffiffiffiffiffi
D _q

p
, (24)

where

cðe;o; b;on; zÞ ¼ oð1þ eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2b

e�2npzon=o

O
sin

2npO
o

s
. (25)
3.2. Numerical results

To validate the approximations made in the derivation of the discrete map, Eq. (24), a series of numerical experiments
were performed in which data for several successive low-velocity impacts were collected and the value of D _q at one impact
was graphed against the value at the previous impact. Specifically, simulations were performed with the numerical values
of z, on, and e previously estimated, with b ¼ 0:65 mm, and f ¼ o=2p ¼ 6, 10, 14, 18, and 22 Hz. For each set of parameter
values, a large number of runs were performed with random initial conditions near x ¼ 0 and with a range of values of a

near b. For each run, data were collected for successive impacts as long as D _q did not exceed 50 mm=s.
Fig. 4 shows a log–log plot of the collected data for the five different excitation frequencies. In each case, a linear

regression fit was performed on the data with D _q 2 ð0:01;1Þmm=s. The corresponding values of the slope and intercept
are shown in tabular form in Table 1. The table further contains predicted values for the slope and intercept
(i.e., log cðe;o; b;on; zÞ) as obtained from Eqs. (24) and (25). The results confirm the validity of the discrete map in
predicting the near-grazing transient dynamics.
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Table 1

Comparison of slope and intercept describing the linear fit shown in Fig. 4 and predicted values obtained using Eqs. (24) and (25) with b ¼ 0:65.

o=2p (Hz) Numerical results Mapping results

Slope Intercept Slope Intercept

6 0.5015 1.0140 0.5 1.0116

10 0.4990 1.2373 0.5 1.2387

14 0.5005 1.2404 0.5 1.2396

18 0.4986 1.4869 0.5 1.4887

22 0.5017 1.3456 0.5 1.3441

Here, n ¼ 1 when o ¼ 12p, n ¼ 2 when o ¼ 20p and 28p, and n ¼ 3 when o ¼ 36p and 44p.
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4. Experimental results

Experiments were performed following the protocol described in Section 2.2 and data were collected and processed in
the same manner as described in Section 3.2 with the proviso that for each excitation frequency, the value of b was adjusted
to maintain the excitation voltage within an allowable range.

Fig. 5 shows a log–log plot of the collected data for the five different excitation frequencies. In each case, the behavior
predicted from Eq. (24) is represented by the included straight lines (where b ¼ 0:65 for f ¼ 6 and 14 Hz, b ¼ 0:67 for
f ¼ 10 Hz, b ¼ 0:59 for f ¼ 18 Hz, and b ¼ 0:54 for f ¼ 22 Hz). The results again confirm the validity of the discrete map in
predicting the near-grazing transient dynamics (although a noticeable discrepancy is noticed in the intercept in the case
that f ¼ 22 Hz). Indeed, the experimental data conform with the predicted value of the integer n, i.e., the smallest integer
that guarantees that the argument of the radical in Eq. (25) is positive.

It was observed that the limitations imposed by the measurement hardware and the method for extracting jumps in the
absolute velocity made it difficult to collect accurate data for extremely-low-relative-velocity impacts (cf. the leftmost
impact in Fig. 6). Indeed, while the discontinuity in the data is still somewhat apparent, the nature of the discontinuity is
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not as abrupt as in the case of the latter impacts shown in Fig. 6. For this reason, a lower limit was imposed on the values of
D _q included in the analysis.
5. Discussion

The experimental, analytical, and numerical results presented here demonstrate clearly the near-grazing transient
behavior that supports the proposed reliance on the nonsmooth fold bifurcation in vibro-impacting systems as the
operating principle of a novel class of limit switches. In particular, the increase beyond all bounds of the transient growth
rate of near-grazing impact velocities as the threshold parameter value is approached suggests a high sensitivity and rapid
switching speed of a corresponding limit switch. In contrast, for limit switches that rely on saddle-node bifurcations of
equilibria or smooth cyclic-fold bifurcations of periodic oscillations, the corresponding growth rate would fall off to zero as
the threshold value was approached.

Although other investigators have explored the near-grazing dynamics of vibro-impact oscillators, previous work has
primarily focused on the form of steady-state attractors and not on the transient behavior following the initial onset of low-
relative-velocity impacts [22–27]. As the emphasis here has been on the immediate response of a limit switch following the
crossing of the threshold value, only transient results have been included in the analysis. The study of the steady-state
behaviors to which the internal state of the switch would be attracted following the initial transient would provide insight
into the overall switch design. Work is currently underway to explore this in a coupled vibro-impacting electromechanical
circuit.

Recent work on the control of near-grazing dynamics in vibro-impacting systems suggest a mechanism for regulating
the limit-switch response [29,30]. With the inclusion of additional feedback, the nonsmooth fold bifurcation associated
with near-grazing dynamics can be replaced with the persistence scenario in which a steady-state attractor persists in the
vicinity of the threshold parameter value. Such a regulator would enable the inclusion of a secondary fail-safe mechanism
that would first need to be triggered in order to enable the limit switch. This would enhance the ability to adjust the
sensitivity of the switch to noise and is a suggested topic for further study.

Finally, the present effort also suggests the possibility of relying on the experimental and theoretical formalism as a
parameter-identification tool. In particular, while not established with any certainty, we argue that the discrepancy in the
intercept shown in Fig. 5(c) is due to misidentified system parameters. Continued work with the present experimental
setup as well as with the coupled vibro-impacting electromechanical circuit mentioned above is likely to yield further
insight into using the near-grazing transient behavior for system identification.
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